P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro.
نویسندگان
چکیده
Patients with chronic renal failure (CRF) exhibit endothelial dysfunction, which may involve uremic retention solutes that accumulate in blood and tissues. In this study, we investigated the in vitro effect of the uremic retention solute p-cresol on the barrier function of endothelial cells (HUVEC). P-cresol was tested at concentrations found in CRF patients, and since p-cresol is protein-bound, experiments were performed with and without physiological concentration of human albumin (4 g/dl). With albumin, we showed that p-cresol caused a strong increase in endothelial permeability after a 24-hour exposure. Concomitant with this increase in endothelial permeability, p-cresol induced a reorganization of the actin cytoskeleton and an alteration of adherens junctions. These molecular events were demonstrated by the decreased staining of cortical actin, associated with the formation of stress fibers across the cell, and by the decreased staining of junctional VE-cadherin. This decrease in junctional VE-cadherin staining was not associated with a reduction of membrane expression. Without albumin, the effects of p-cresol were more pronounced. The specific Rho kinase inhibitor, Y-27632, inhibited the effects of p-cresol, indicating that p-cresol mediates the increase in endothelial permeability in a Rho kinase-dependent way. In conclusion, these results show that p-cresol causes a severe dysfunction of endothelial barrier function in vitro and suggest this uremic retention solute may participate in the endothelium dysfunction observed in CRF patients.
منابع مشابه
The uremic solute p-cresol decreases leukocyte transendothelial migration in vitro.
Chronic renal failure (CRF) patients display an immunodeficiency state, and uremic solutes that accumulate during CRF may be involved in this immunodeficiency. In this study, we examined whether the uremic solute para-cresol (p-cresol), at concentrations similar to those found in patients, alters leukocyte transmigration in vitro. We found that p-cresol significantly inhibited monocyte THP-1 ce...
متن کاملThe uremic retention solute p-cresyl sulfate alters NO signal transduction by alteration of the soluble guanylate cyclase redox state
Introduction Chronic kidney disease (CKD) is associated with excessive cardiovascular disease and mortality. Nitric oxide (NO) – soluble guanylate cyclase (sGC) signaling is impaired in CKD patients, contributing to a near ubiquitous endothelial dysfunction. Loss of kidney function induces major alterations in the blood concentration of numerous molecules. Several of these so-called uremic rete...
متن کاملToxicity of free p-cresol: a prospective and cross-sectional analysis.
BACKGROUND Uremic syndrome is the consequence of the retention of solutes usually cleared by the healthy kidneys. p-Cresol can be considered a prototypic protein-bound uremic toxin. It is conceivable, analogous with drugs, that the non-protein-bound fraction of p-cresol exerts toxicity. This aspect had never been evaluated, nor have the factors influencing the free fraction of p-cresol. METHO...
متن کاملAntiproliferation effect of the uremic toxin para-cresol on endothelial progenitor cells is related to its antioxidant activity
Endothelial dysfunction and impaired endothelial regenerative capacity are key contributors to the high incidence of cardiovascular disease in patients with chronic kidney disease (CKD). Uremic toxins are associated with this pathogenesis. Previous studies have revealed that a uremic toxin, para‑cresol (p‑cresol), exerts an antiproliferation effect on human endothelial progenitor cells (EPCs), ...
متن کاملEffects of uremic solutes on reactive oxygen species in vitro model systems as a possibility of support the renal function management
BACKGROUND In view of the prevalence of oxidative stress in chronic kidney disease (CKD) patients, the loss of low-molecular-weight biomolecules by hemodialysis and the antioxidant potential of some uremic solutes that accumulate in CKD, we used in vitro model systems to test the antioxidant potential of the following uremic solutes: uric acid, hippuric acid, p-cresol, phenol, methylguanidine, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thrombosis and haemostasis
دوره 92 1 شماره
صفحات -
تاریخ انتشار 2004